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Abstract

The recent progress of astronomical instrumentation resulted in the construction
of multi-object spectrographs with hundreds to thousands of micro-slits or optical
fibers allowing the acquisition of tens of thousands of spectra of celestial objects
per observing night. Currently there are several spectroscopic surveys containing
millions of spectra and much larger are in preparation. Most of the large-scale
surveys are processed spectrum by spectrum in order to estimate physical param-
eters of individual objects. The parameters obtained are then used to construct
the better models of space-kinematic structure and evolution of the Universe or
its subsystems. Such surveys are, however, very good source of homogenized, pre-
processed data for application of machine learning techniques and advanced statis-
tical processing common in Astroinformatics. We present challenges of knowledge
discovery process applied to large spectroscopic surveys as well as memory space
and processing speed demands of current machine learning methods, requiring Big
Data techniques.

Introduction

Although the current spectroscopic surveys have been producing much smaller
object catalogues than photometric all-sky surveys, the amount of information
collected is already escaping the capabilities of human preview and analysis so
far common in classical spectroscopy. Millions of spectra (further called mega-
surveys) are usually processed spectrum by spectrum by complex pipelines to
yield redshift, spectral type or similar physical parameters. The more detailed
knowledge hidden in this "Big Data" must, however, be discovered by methods
of Artificial Intelligence and Machine Learning.

Spectral mega-surveys

The currently largest mega-surveys result from two long-term projects using
multi-object fibre spectrographs:
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– Sloan Digital Sky Survey (SDSS). In its DR10 [1] there are 3.3 million
spectra. Two spectrographs were so far fed by 640 fibres placed in pre-
drilled holes of focal plate, recently a new spectrograph BOSS with 1000
fibres has been used. There are 1.8 millions identified as galaxies, 308 000
as quasars and more than 700 000 are stellar.

– LAMOST survey. Its DR1 [14] contains 2.2 million spectra, The sixteen
LAMOST spectrographs are fed by more than 4000 fibres positioned by
micro-motors. In the survey there are more than 1 million of stars with
estimated parameters.

The processing of both surveys is done by automatic pipelines which classify
individual objects using a set of templates by best matching the global shape
of spectra. The local features (e.g. line profiles) are ignored. Strong narrow
emissions may be even rejected by pipeline as a possibly spoiled pixels.

Emission line objects

There is a lot of objects that may show some important spectral lines in emission.
The physical parameters may differ considerable, however, there seems to be the
common origin of their emission — the gaseous envelope in the shape of sphere
or rotating disk. To this interesting group belong the Be and B[e] stars, but very
similar shapes may be seen in some quasars and AGNs in general.

Be and B[e] stars

The classical Be stars [7] are non-supergiant B type stars whose spectra have
or have had at some time, one or more emission lines in the Balmer series. In
particular the Hα emission is the dominant feature in spectra of these objects.
Characteristic for Be stars are the single or double-peak profiles and sometimes
so called shell lines — deep absorptions in centre of the emission. They may be
also variable on different time scales. The emission lines are commonly under-
stood to originate in the flattened circumstellar disk, probably of decretion origin
(i.e. created from material of central star), however the exact mechanism is still
unsolved.

Similar strong emission features in Hα show the B[e] stars [15], however they
present as well forbidden lines of low excitation elements (e.g. Iron, Carbon,
Oxygen, Nitrogen) and infrared excess (pointing to the presence of dusty enve-
lope). The B[e] stars are very rare, mostly unclassified.

Models of Be stars

The extensive effort of explaining the various shapes of Be stars as well as their
variability led to sophisticated models of disks under different physical conditions.
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The models [12] show the dependence of the shape of prominent emission lines on
the spectral type of the star, the physical structure of the disk as the temperature
and density distribution, and, namely, on the inclination angle to the observer’s
plane, which is clearly the main generator of changes from single peak to double
peak and shell profiles. They succeeded also to find the good models fitting well
the observed profiles of many well-known Be stars.

Quasars and AGNs

According to the commonly accepted unified model of AGNs [9] the shape of
emission lines in quasars is also generated by different geometrical conditions
and namely the inclination of disk to the observer’s plane like for Be stars (but
now the in-plane disk is thick and obscuring the underlying emission source)

As was shown by [10] and [11] the physics of central black hole in quasar may be
estimated from the characteristic shape of emission line in so called Broad Line
Regions and there seem to be two different populations of quasars with either
Gaussian or Lorentzian components in complex profiles of prominent emission
lines like Hβ , Lyα, CIV 1549Å or HeII 1640Å.

Identification of Be and B[e] stars in mega-surveys

As the most prominent emission of such stars is shown in the Hα line around
the laboratory air wavelength 6562.8Å, the successful identification of a Be or
B[e] star (or another low redshift emission line object) requires visualisation of
the short wavelength interval (about 30–50Å) centered at this position. The
spectral resolving power of about 2000 common to both surveys is satisfactory to
distinguish the double peak profile, although more details (e.g. shell lines) are not
resolved. The visual identification may be aided by over-plotting of large number
of zoomed profiles on continuum normalized spectra with interactive point-and-
click selection as it is realized in program SPLAT-VO [8], but still it presents and
enormous amount of work. The more promising approach seems to be presented
by application of machine learning methods.

Automatic classification by supervised learning

To find emission line objects in a big survey, the automatic procedure must be
used based on principles of supervised machine learning. It is basically the pat-
tern recognition problem. The shape of a line is described by several parameters
(called feature vector). Than a sample of both positive and negative examples
(assigning labels manually) is selected for training the machine learning classifier.
The samples must be randomly mixed and the many-fold cross-validations are
applied until the system correctly recognises maximum of positive samples in any
mixture of input vectors. Resulting classifier is applied on unknown spectra.
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After preliminary experiments with spectra of Be stars from Ondřejov 2m Perek
telescope archive used for training simple classifier based on two parameters
(height, width) of a Gaussian line fit [13], more advanced methods like Arti-
ficial Neuron Network, Support Vector Machines or Decision trees were tested
as a kernel of the classifier, however the most promising are Random Decision
Forests and Random Ferns [6]. Their advantage for application on big spectral
archives is the possibility of their massive parallelisation, namely on GPUs.

Finding outliers with unsupervised learning

While the supervised training described above helps to classify the spectra archive
and thus helps to find the objects of given class, that was already identified in
a sample and labelled accordingly, the unsupervised learning tries to identify
similar classes automatically without the human intervention. One of a very
useful method is the Kohonen Self-Organising Map (SOM), which can even help
to identify outliers, e.g. yet unknown or very rare objects with strange features
hidden in the spectral archive. SOM is, in fact, a multi-dimensional topological
map of artificial neurons projected in 2D space [4]. The measure of similarity
is the distance between the neurons in such a space represented in a 2D by so
Unified Distance Matrix (U-matrix). The outliers are situated in a places with
most widely separated neurons (highest U-matrix values).

Experiments with almost 1700 spectra of Be, B[e] and ordinary stars from archive
of 2m Ondřejov Perek Telescope, that were already visually classified into 4 classes
with different shape of Hα line (pure absorption, single-peak emission, double
peak emission and absorption combined with emission), have convincingly iden-
tified the B[e] stars as most exotic profiles in distant U-matrix clusters [5]. There
are several GPU parallelizable implementations of SOMs with good scalability,
however the big SOMs will hardly fit in memory of GPUs and so new specific
algorithms for GPUs have to be created.

Dimensionality reduction

Even the quick massively parallel computer or GPU cluster will not be able to
process millions of several thousand pixels long feature vector iteratively in a rea-
sonable time. So the dimension of a feature vector must be reduced significantly,
still conserving the most characteristic features of line shapes. The common
method of dimensionality reduction, the Principal Component Analysis, unfor-
tunately fails here as the bulk of data in every spectrum is similar, the difference
is only the spectral line, which is localised in a small part of whole spectrum [3].

Thus another methods capable to emphasise the weight of the strictly localised
features is needed. One of this is the Wavelet Transform. All spectra are con-
verted in a vector of wavelet coefficients corresponding to different frequencies.
Experiments show good performance of such procedure, which could still sep-
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arate all classes of line shapes with high accuracy even if the 2000 pixels long
vector was degraded into 10 numbers using Wavelet Power Spectrum [2].

COST Action BIG-SKY-EARTH

As was shown, the extraction of new information from the spectral mega-surveys
requires a sophisticated Artificial Intelligence techniques, new highly scalable and
massively parallelizable algorithms, namely for GPUs and handling of Big Data
in a efficient manner (e.g. on-the-spot post-processing and distributed queries as
in VO technology). The information discovery in a big databases is a subject of
a new astronomical discipline, the Astroinformatics, emerging today.

Similar problems with Big Data have other natural sciences as well. The most
similar to astronomical problems seem to be the Earth sciences like geophysics,
remote sensing, oceanography etc. Therefore wide collaboration was set up in
a framework of European COST Action TD1403 called BIG-SKY-EARTH. The
main goals are:

– Optimisation of database tools in astro- and geophysics contexts
– Data mining and machine learning in petabyte era as frontiers in astronomy

and Earth observations
– Education of new generation of experts in the knowledge extraction from

massive datasets
– Visualisation of high dimensional database

This European networking action is planned for years 2015 to 2018.

Conclusions

The big spectral archives are good source of homogenised data suitable for data
mining of interesting objects according to their characteristic spectral line shape.
The standard methods of supervised learning can be used to find the objects of
given class, e.g. emission stars, however the advanced unsupervised methods as
SOM help to identify outliers. The long processing time of millions of spectra
may become feasible with reduction of their dimensionality to several elements of
input feature vector, or by massively parallel processing, including GPUs. This,
however, requires a change in commonly used algorithms in order to develop new
massively parallelizable ones.
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